Abstract
Abstract
Here we show a heterogeneous energy landscape approach to describing the Kohlrausch-Williams-Watts (KWW) relaxation function. For a homogeneous dynamic process, the distribution of free energy landscape is first proposed, revealing the significance of rugged fluctuations. In view of the heterogeneous relaxation given in two dynamic phases and the transmission coefficient in a rate process, we obtain a general characteristic relaxation time distribution equation for the KWW function in a closed, analytic form. Analyses of numerical computation show excellent accuracy, both in time and frequency domains, in the convergent performance of the heterogeneous energy landscape expression and shunning the catastrophic truncations reported in the previous work. The stretched exponential β, closely associated to temperature and apparent correlation with one dynamic phase, reveals a threshold value of 1/2 defining different behavior of the probability density functions. Our work may contribute, for example, to in-depth comprehension of the dynamic mechanism of glass transition, which cannot be provided by existing approaches.
Publisher
Springer Science and Business Media LLC
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献