Abstract
AbstractMethane (CH4) emission reduction to limit warming to 1.5 °C can be tracked by analyzing CH4 concentration and its isotopic composition (δ13C, δD) simultaneously. Based on reconstructions of the temporal trends, latitudinal, and vertical gradient of CH4 and δ13C from 1985 to 2020 using an atmospheric chemistry transport model, we show (1) emission reductions from oil and gas exploitation (ONG) since the 1990s stabilized the atmospheric CH4 growth rate in the late 1990s and early 2000s, and (2) emissions from farmed animals, waste management, and coal mining contributed to the increase in CH4 since 2006. Our findings support neither the increasing ONG emissions reported by the EDGARv6 inventory during 1990–2020 nor the large unconventional emissions increase reported by the GAINSv4 inventory since 2006. Total fossil fuel emissions remained stable from 2000 to 2020, most likely because the decrease in ONG emissions in some regions offset the increase in coal mining emissions in China.
Publisher
Springer Science and Business Media LLC
Reference94 articles.
1. United Nations Environment Programme. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions - Summary for Decision Makers. (2021).
2. Crippa, M. et al. High resolution temporal profiles in the emissions database for global atmospheric research. Sci. Data 7, 121 (2020).
3. Höglund-Isaksson, L. Bottom-up simulations of methane and ethane emissions from global oil and gas systems 1980 to 2012. Environ. Res. Lett. 12, 024007 (2017).
4. Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P. & Schöpp, W. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environ. Res. Commun 2, 025004 (2020).
5. Ito, A., Patra, P. K. & Umezawa, T. Bottom-Up Evaluation of the Methane Budget in Asia and Its Subregions. Global Biogeochem. Cycles 37, e2023GB007723 (2023).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献