Abstract
AbstractOcean acidification and global climate change are predicted to negatively impact marine calcifiers, with species inhabiting the intertidal zone being especially vulnerable. Current predictions of organism responses to projected changes are largely based on relatively short to medium term experiments over periods of a few days to a few years. Here we look at responses over a longer time span and present a 130-year shell shape and shell thickness record from archival museum collections of the marine intertidal predatory gastropod Nucella lapillus. We used multivariate ecological models to identify significant morphological trends through time and along environmental gradients and show that, contrary to global predictions, local N. lapillus populations built continuously thicker shells while maintaining a consistent shell shape throughout the last century.
Funder
RCUK | Natural Environment Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference134 articles.
1. Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49, 1–42 (2011).
2. Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).
3. Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection? Ecol. Evol. 5, 4875–4884 (2015).
4. Hofmann, G. E. et al. The effect of ocean acidification on calcifying organisms in marine ecosystems: an Organism-to-Ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 41, 127–147 (2010).
5. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献