China Southern Power Grid’s decarbonization likely to impact cropland and transboundary rivers

Author:

Jin XiaoyuORCID,Chowdhury A.F.M. KamalORCID,Liu BenxiORCID,Cheng Chuntian,Galelli StefanoORCID

Abstract

AbstractDecarbonizing the electricity sector requires massive investments in generation and transmission infrastructures that may impact both water and land resources. Characterizing these effects is key to ensure a sustainable energy transition. Here, we identify and quantify the unintended consequences of decarbonizing the China Southern Power Grid, China’s second-largest grid. We show that reaching carbon neutrality by 2060 is feasible; yet, doing so requires converting 40,000 square kilometers of land to support solar and wind as well as tapping on rivers to build ~32 gigawatts of hydropower. The impact of wind and solar development would span across multiple sectors, since crop and grassland constitute 90% of the identified sites. The construction of new dams may carry major externalities and trickle down to nearby countries, as most dams are located in transboundary rivers. Curbing the international footprint of this decarbonization effort would require additional investments (~12 billion United States dollars) in carbon capture technologies.

Funder

National Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3