Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
-
Published:2023-01-02
Issue:3
Volume:41
Page:399-408
-
ISSN:1087-0156
-
Container-title:Nature Biotechnology
-
language:en
-
Short-container-title:Nat Biotechnol
Author:
Allesøe Rosa Lundbye, Lundgaard Agnete TroenORCID, Hernández Medina RicardoORCID, Aguayo-Orozco Alejandro, Johansen JoachimORCID, Nissen Jakob Nybo, Brorsson Caroline, Mazzoni Gianluca, Niu LiliORCID, Biel Jorge HernansanzORCID, Leal Rodríguez CristinaORCID, Brasas Valentas, Webel Henry, Benros Michael EriksenORCID, Pedersen Anders GormORCID, Chmura Piotr Jaroslaw, Jacobsen Ulrik PlesnerORCID, Mari Andrea, Koivula RobertORCID, Mahajan Anubha, Vinuela AnaORCID, Tajes Juan Fernandez, Sharma Sapna, Haid MarkORCID, Hong Mun-GwanORCID, Musholt Petra B., De Masi Federico, Vogt Josef, Pedersen Helle Krogh, Gudmundsdottir Valborg, Jones Angus, Kennedy GwenORCID, Bell Jimmy, Thomas E. LouiseORCID, Frost GaryORCID, Thomsen Henrik, Hansen Elizaveta, Hansen Tue HaldorORCID, Vestergaard Henrik, Muilwijk Mirthe, Blom Marieke T., ‘t Hart Leen M., Pattou Francois, Raverdy Violeta, Brage Soren, Kokkola Tarja, Heggie Alison, McEvoy Donna, Mourby Miranda, Kaye JaneORCID, Hattersley AndrewORCID, McDonald Timothy, Ridderstråle MartinORCID, Walker Mark, Forgie Ian, Giordano Giuseppe N., Pavo Imre, Ruetten Hartmut, Pedersen OlufORCID, Hansen TorbenORCID, Dermitzakis Emmanouil, Franks Paul W., Schwenk Jochen M.ORCID, Adamski Jerzy, McCarthy Mark I., Pearson Ewan, Banasik Karina, Rasmussen SimonORCID, Brunak SørenORCID, Froguel Philippe, Thomas Cecilia Engel, Haussler Ragna, Beulens Joline, Rutters Femke, Nijpels Giel, van Oort Sabine, Groeneveld Lenka, Elders Petra, Giorgino Toni, Rodriquez Marianne, Nice Rachel, Perry Mandy, Bianzano Susanna, Graefe-Mody Ulrike, Hennige Anita, Grempler Rolf, Baum Patrick, Stærfeldt Hans-Henrik, Shah Nisha, Teare Harriet, Ehrhardt Beate, Tillner Joachim, Dings Christiane, Lehr Thorsten, Scherer Nina, Sihinevich Iryna, Cabrelli Louise, Loftus Heather, Bizzotto Roberto, Tura Andrea, Dekkers Koen, van Leeuwen Nienke, Groop Leif, Slieker Roderick, Ramisch Anna, Jennison Christopher, McVittie Ian, Frau Francesca, Steckel-Hamann Birgit, Adragni Kofi, Thomas Melissa, Pasdar Naeimeh Atabaki, Fitipaldi Hugo, Kurbasic Azra, Mutie Pascal, Pomares-Millan Hugo, Bonnefond Amelie, Canouil Mickael, Caiazzo Robert, Verkindt Helene, Holl Reinhard, Kuulasmaa Teemu, Deshmukh Harshal, Cederberg Henna, Laakso Markku, Vangipurapu Jagadish, Dale Matilda, Thorand Barbara, Nicolay Claudia, Fritsche Andreas, Hill Anita, Hudson Michelle, Thorne Claire, Allin Kristine, Arumugam Manimozhiyan, Jonsson Anna, Engelbrechtsen Line, Forman Annemette, Dutta Avirup, Sondertoft Nadja, Fan Yong, Gough Stephen, Robertson Neil, McRobert Nicky, Wesolowska-Andersen Agata, Brown Andrew, Davtian David, Dawed Adem, Donnelly Louise, Palmer Colin, White Margaret, Ferrer Jorge, Whitcher Brandon, Artati Anna, Prehn Cornelia, Adam Jonathan, Grallert Harald, Gupta Ramneek, Sackett Peter Wad, Nilsson Birgitte, Tsirigos Konstantinos, Eriksen Rebeca, Jablonka Bernd, Uhlen Mathias, Gassenhuber Johann, Baltauss Tania, de Preville Nathalie, Klintenberg Maria, Abdalla Moustafa,
Abstract
AbstractThe application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
Funder
Novo Nordisk Fonden Innovative Medicines Initiative
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Molecular Medicine,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference77 articles.
1. Fares, H., DiNicolantonio, J. J., O’Keefe, J. H. & Lavie, C. J. Amlodipine in hypertension: a first-line agent with efficacy for improving blood pressure and patient outcomes. Open Heart 3, e000473 (2016). 2. Hu, J. X., Thomas, C. E. & Brunak, S. Network biology concepts in complex disease comorbidities. Nat. Rev. Genet. 17, 615–629 (2016). 3. Austin, R. P. Polypharmacy as a risk factor in the treatment of type 2 diabetes. Diabetes Spectr. 19, 13–16 (2006). 4. Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019). 5. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|