Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models

Author:

Allesøe Rosa Lundbye,Lundgaard Agnete TroenORCID,Hernández Medina RicardoORCID,Aguayo-Orozco Alejandro,Johansen JoachimORCID,Nissen Jakob Nybo,Brorsson Caroline,Mazzoni Gianluca,Niu LiliORCID,Biel Jorge HernansanzORCID,Leal Rodríguez CristinaORCID,Brasas Valentas,Webel Henry,Benros Michael EriksenORCID,Pedersen Anders GormORCID,Chmura Piotr Jaroslaw,Jacobsen Ulrik PlesnerORCID,Mari Andrea,Koivula RobertORCID,Mahajan Anubha,Vinuela AnaORCID,Tajes Juan Fernandez,Sharma Sapna,Haid MarkORCID,Hong Mun-GwanORCID,Musholt Petra B.,De Masi Federico,Vogt Josef,Pedersen Helle Krogh,Gudmundsdottir Valborg,Jones Angus,Kennedy GwenORCID,Bell Jimmy,Thomas E. LouiseORCID,Frost GaryORCID,Thomsen Henrik,Hansen Elizaveta,Hansen Tue HaldorORCID,Vestergaard Henrik,Muilwijk Mirthe,Blom Marieke T.,‘t Hart Leen M.,Pattou Francois,Raverdy Violeta,Brage Soren,Kokkola Tarja,Heggie Alison,McEvoy Donna,Mourby Miranda,Kaye JaneORCID,Hattersley AndrewORCID,McDonald Timothy,Ridderstråle MartinORCID,Walker Mark,Forgie Ian,Giordano Giuseppe N.,Pavo Imre,Ruetten Hartmut,Pedersen OlufORCID,Hansen TorbenORCID,Dermitzakis Emmanouil,Franks Paul W.,Schwenk Jochen M.ORCID,Adamski Jerzy,McCarthy Mark I.,Pearson Ewan,Banasik Karina,Rasmussen SimonORCID,Brunak SørenORCID,Froguel Philippe,Thomas Cecilia Engel,Haussler Ragna,Beulens Joline,Rutters Femke,Nijpels Giel,van Oort Sabine,Groeneveld Lenka,Elders Petra,Giorgino Toni,Rodriquez Marianne,Nice Rachel,Perry Mandy,Bianzano Susanna,Graefe-Mody Ulrike,Hennige Anita,Grempler Rolf,Baum Patrick,Stærfeldt Hans-Henrik,Shah Nisha,Teare Harriet,Ehrhardt Beate,Tillner Joachim,Dings Christiane,Lehr Thorsten,Scherer Nina,Sihinevich Iryna,Cabrelli Louise,Loftus Heather,Bizzotto Roberto,Tura Andrea,Dekkers Koen,van Leeuwen Nienke,Groop Leif,Slieker Roderick,Ramisch Anna,Jennison Christopher,McVittie Ian,Frau Francesca,Steckel-Hamann Birgit,Adragni Kofi,Thomas Melissa,Pasdar Naeimeh Atabaki,Fitipaldi Hugo,Kurbasic Azra,Mutie Pascal,Pomares-Millan Hugo,Bonnefond Amelie,Canouil Mickael,Caiazzo Robert,Verkindt Helene,Holl Reinhard,Kuulasmaa Teemu,Deshmukh Harshal,Cederberg Henna,Laakso Markku,Vangipurapu Jagadish,Dale Matilda,Thorand Barbara,Nicolay Claudia,Fritsche Andreas,Hill Anita,Hudson Michelle,Thorne Claire,Allin Kristine,Arumugam Manimozhiyan,Jonsson Anna,Engelbrechtsen Line,Forman Annemette,Dutta Avirup,Sondertoft Nadja,Fan Yong,Gough Stephen,Robertson Neil,McRobert Nicky,Wesolowska-Andersen Agata,Brown Andrew,Davtian David,Dawed Adem,Donnelly Louise,Palmer Colin,White Margaret,Ferrer Jorge,Whitcher Brandon,Artati Anna,Prehn Cornelia,Adam Jonathan,Grallert Harald,Gupta Ramneek,Sackett Peter Wad,Nilsson Birgitte,Tsirigos Konstantinos,Eriksen Rebeca,Jablonka Bernd,Uhlen Mathias,Gassenhuber Johann,Baltauss Tania,de Preville Nathalie,Klintenberg Maria,Abdalla Moustafa,

Abstract

AbstractThe application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.

Funder

Novo Nordisk Fonden

Innovative Medicines Initiative

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Molecular Medicine,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3