Abstract
AbstractWhile AlphaFold2 can predict accurate protein structures from the primary sequence, challenges remain for proteins that undergo conformational changes or for which few homologous sequences are known. Here we introduce AlphaLink, a modified version of the AlphaFold2 algorithm that incorporates experimental distance restraint information into its network architecture. By employing sparse experimental contacts as anchor points, AlphaLink improves on the performance of AlphaFold2 in predicting challenging targets. We confirm this experimentally by using the noncanonical amino acid photo-leucine to obtain information on residue–residue contacts inside cells by crosslinking mass spectrometry. The program can predict distinct conformations of proteins on the basis of the distance restraints provided, demonstrating the value of experimental data in driving protein structure prediction. The noise-tolerant framework for integrating data in protein structure prediction presented here opens a path to accurate characterization of protein structures from in-cell data.
Funder
Deutsche Forschungsgemeinschaft
Wellcome Trust
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Molecular Medicine,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献