Computational pathology identifies immune-mediated collagen disruption to predict clinical outcomes in gynecologic malignancies

Author:

Aggarwal ArpitORCID,Khalighi Sirvan,Babu Deepak,Li HaojiaORCID,Azarianpour-Esfahani SepidehORCID,Corredor GermánORCID,Fu PingfuORCID,Mokhtari Mojgan,Pathak Tilak,Thayer ElizabethORCID,Modesitt Susan,Mahdi Haider,Avril Stefanie,Madabhushi AnantORCID

Abstract

Abstract Background The role of immune cells in collagen degradation within the tumor microenvironment (TME) is unclear. Immune cells, particularly tumor-infiltrating lymphocytes (TILs), are known to alter the extracellular matrix, affecting cancer progression and patient survival. However, the quantitative evaluation of the immune modulatory impact on collagen architecture within the TME remains limited. Methods We introduce CollaTIL, a computational pathology method that quantitatively characterizes the immune-collagen relationship within the TME of gynecologic cancers, including high-grade serous ovarian (HGSOC), cervical squamous cell carcinoma (CSCC), and endometrial carcinomas. CollaTIL aims to investigate immune modulatory impact on collagen architecture within the TME, aiming to uncover the interplay between the immune system and tumor progression. Results We observe that an increased immune infiltrate is associated with chaotic collagen architecture and higher entropy, while immune sparse TME exhibits ordered collagen and lower entropy. Importantly, CollaTIL-associated features that stratify disease risk are linked with gene signatures corresponding to TCA-Cycle in CSCC, and amino acid metabolism, and macrophages in HGSOC. Conclusions CollaTIL uncovers a relationship between immune infiltration and collagen structure in the TME of gynecologic cancers. Integrating CollaTIL with genomic analysis offers promising opportunities for future therapeutic strategies and enhanced prognostic assessments in gynecologic oncology.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3