Fusion peptide is superior to co-expressing subunits for arming oncolytic herpes virus with interleukin 12

Author:

Fukuhara HiroshiORCID,Sato Yuzuri TsurumakiORCID,Hou JiangangORCID,Iwai MiwakoORCID,Todo TomokiORCID

Abstract

Abstract Background G47∆ is a triple-mutated oncolytic herpes simplex virus type 1 (HSV-1) recently approved as a new drug for malignant glioma in Japan. As the next-generation, we develop armed oncolytic HSV-1 using G47∆ as the backbone. Because oncolytic HSV-1 elicits specific antitumor immunity, interleukin 12 (IL-12) can function as an effective payload to enhance the efficacy. Methods We evaluate the optimal methods for expressing IL-12 as a payload for G47∆-based oncolytic HSV-1. Two new armed viruses are generated for evaluation by employing different methods to express IL-12: T-mfIL12 expresses murine IL-12 as a fusion peptide, with the genes of two subunits (p35 and p40) linked by bovine elastin motifs, and T-mIL12-IRES co-expresses the subunits, with the two genes separated by an internal ribosome entry site (IRES) sequence. Results T-mfIL12 is significantly more efficient in producing IL-12 than T-mIL12-IRES in all cell lines tested, whereas the expression methods do not affect the replication capabilities and cytopathic effects. In two syngeneic mouse subcutaneous tumor models of Neuro2a and TRAMP-C2, T-mfIL12 exhibits a significantly higher efficacy than T-mIL12-IRES when inoculated intratumorally. Furthermore, T-mfIL12 shows a significantly higher intratumoral expression of functional IL-12, causing stronger stimulation of specific antitumor immune responses than T-mIL12-IRES. Conclusions The results implicate that a fusion-type expression of IL-12 is a method superior to co-expression of separate subunits, due to higher production of functional IL-12 molecules. This study led to the creation of triple-mutated oncolytic HSV-1 armed with human IL-12 currently used in phase 1/2 trial for malignant melanoma.

Funder

MEXT | Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3