Pre-diagnostic trajectories of lymphocytosis predict time to treatment and death in patients with chronic lymphocytic leukemia

Author:

Andersen Michael Asger,Grand Mia KlintenORCID,Brieghel ChristianORCID,Siersma Volkert,Andersen Christen Lykkegaard,Niemann Carsten UtoftORCID

Abstract

Abstract Background The dynamics of pre-diagnostic lymphocytosis in patients with ensuing chronic lymphocytic leukemia (CLL) need to be explored as a better understanding of disease progression may improve treatment options and even lead to disease avoidance approaches. Our aim was to investigate the development of lymphocytosis prior to diagnosis in a population-based cohort of patients with CLL and to assess the prognostic information in these pre-diagnostic measurements. Methods All patients diagnosed with CLL in the Greater Copenhagen area between 2008 and 2016 were included in the study. Pre-diagnostic blood test results were obtained from the Copenhagen Primary Care Laboratory Database encompassing all blood tests requested by Copenhagen general practitioners. Using pre-diagnostic measurements, we developed a model to assess the prognosis following diagnosis. Our model accounts for known prognostic factors and corresponds to lymphocyte dynamics after diagnosis. Results We explore trajectories of lymphocytosis, associated with known recurrent mutations. We show that the pre-diagnostic trajectories are an independent predictor of time to treatment. The implementation of pre-diagnostic lymphocytosis slope groups improved the model predictions (compared to CLL-IPI alone) for treatment throughout the period. The model can manage the heterogeneous data that are to be expected from the real-world setting and adds further prognostic information. Conclusions Our findings further knowledge of the development of CLL and may eventually make prophylactic measures possible.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3