Differences between gridded population data impact measures of geographic access to healthcare in sub-Saharan Africa

Author:

Hierink FleurORCID,Boo GianlucaORCID,Macharia Peter M.ORCID,Ouma Paul O.,Timoner Pablo,Levy MarcORCID,Tschirhart Kevin,Leyk StefanORCID,Oliphant Nicholas,Tatem Andrew J.ORCID,Ray NicolasORCID

Abstract

Abstract Background Access to healthcare is imperative to health equity and well-being. Geographic access to healthcare can be modeled using spatial datasets on local context, together with the distribution of existing health facilities and populations. Several population datasets are currently available, but their impact on accessibility analyses is unknown. In this study, we model the geographic accessibility of public health facilities at 100-meter resolution in sub-Saharan Africa and evaluate six of the most popular gridded population datasets for their impact on coverage statistics at different administrative levels. Methods Travel time to nearest health facilities was calculated by overlaying health facility coordinates on top of a friction raster accounting for roads, landcover, and physical barriers. We then intersected six different gridded population datasets with our travel time estimates to determine accessibility coverages within various travel time thresholds (i.e., 30, 60, 90, 120, 150, and 180-min). Results Here we show that differences in accessibility coverage can exceed 70% at the sub-national level, based on a one-hour travel time threshold. The differences are most notable in large and sparsely populated administrative units and dramatically shape patterns of healthcare accessibility at national and sub-national levels. Conclusions The results of this study show how valuable and critical a comparative analysis between population datasets is for the derivation of coverage statistics that inform local policies and monitor global targets. Large differences exist between the datasets and the results underscore an essential source of uncertainty in accessibility analyses that should be systematically assessed.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3