Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing

Author:

Chen FangORCID,Wang Xingyan,Jang Seon-Kyeong,Quach Bryan C.ORCID,Weissenkampen J. Dylan,Khunsriraksakul ChachritORCID,Yang Lina,Sauteraud Renan,Albert Christine M.ORCID,Allred Nicholette D. D.ORCID,Arnett Donna K.ORCID,Ashley-Koch Allison E.ORCID,Barnes Kathleen C.ORCID,Barr R. Graham,Becker Diane M.,Bielak Lawrence F.ORCID,Bis Joshua C.ORCID,Blangero JohnORCID,Boorgula Meher Preethi,Chasman Daniel I.ORCID,Chavan SameerORCID,Chen Yii-Der I.,Chuang Lee-MingORCID,Correa AdolfoORCID,Curran Joanne E.ORCID,David Sean P.,Fuentes Lisa de lasORCID,Deka Ranjan,Duggirala Ravindranath,Faul Jessica D.,Garrett Melanie E.ORCID,Gharib Sina A.,Guo XiuqingORCID,Hall Michael E.,Hawley Nicola L.ORCID,He Jiang,Hobbs Brian D.,Hokanson John E.,Hsiung Chao A.,Hwang Shih-Jen,Hyde Thomas M.ORCID,Irvin Marguerite R.,Jaffe Andrew E.,Johnson Eric O.ORCID,Kaplan Robert,Kardia Sharon L. R.,Kaufman Joel D.,Kelly Tanika N.,Kleinman Joel E.ORCID,Kooperberg CharlesORCID,Lee I-Te,Levy DanielORCID,Lutz Sharon M.,Manichaikul Ani W.,Martin Lisa W.,Marx Olivia,McGarvey Stephen T.ORCID,Minster Ryan L.ORCID,Moll Matthew,Moussa Karine A.,Naseri Take,North Kari E.ORCID,Oelsner Elizabeth C.ORCID,Peralta Juan M.ORCID,Peyser Patricia A.ORCID,Psaty Bruce M.ORCID,Rafaels Nicholas,Raffield Laura M.,Reupena Muagututi’a Sefuiva,Rich Stephen S.ORCID,Rotter Jerome I.,Schwartz David A.ORCID,Shadyab Aladdin H.,Sheu Wayne H-H.,Sims Mario,Smith Jennifer A.ORCID,Sun XiaoORCID,Taylor Kent D.,Telen Marilyn J.,Watson Harold,Weeks Daniel E.ORCID,Weir David R.ORCID,Yanek Lisa R.ORCID,Young Kendra A.ORCID,Young Kristin L.ORCID,Zhao WeiORCID,Hancock Dana B.ORCID,Jiang BiboORCID,Vrieze ScottORCID,Liu Dajiang J.ORCID

Abstract

AbstractMost transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.

Funder

U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3