Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing
-
Published:2023-01-26
Issue:2
Volume:55
Page:291-300
-
ISSN:1061-4036
-
Container-title:Nature Genetics
-
language:en
-
Short-container-title:Nat Genet
Author:
Chen FangORCID, Wang Xingyan, Jang Seon-Kyeong, Quach Bryan C.ORCID, Weissenkampen J. Dylan, Khunsriraksakul ChachritORCID, Yang Lina, Sauteraud Renan, Albert Christine M.ORCID, Allred Nicholette D. D.ORCID, Arnett Donna K.ORCID, Ashley-Koch Allison E.ORCID, Barnes Kathleen C.ORCID, Barr R. Graham, Becker Diane M., Bielak Lawrence F.ORCID, Bis Joshua C.ORCID, Blangero JohnORCID, Boorgula Meher Preethi, Chasman Daniel I.ORCID, Chavan SameerORCID, Chen Yii-Der I., Chuang Lee-MingORCID, Correa AdolfoORCID, Curran Joanne E.ORCID, David Sean P., Fuentes Lisa de lasORCID, Deka Ranjan, Duggirala Ravindranath, Faul Jessica D., Garrett Melanie E.ORCID, Gharib Sina A., Guo XiuqingORCID, Hall Michael E., Hawley Nicola L.ORCID, He Jiang, Hobbs Brian D., Hokanson John E., Hsiung Chao A., Hwang Shih-Jen, Hyde Thomas M.ORCID, Irvin Marguerite R., Jaffe Andrew E., Johnson Eric O.ORCID, Kaplan Robert, Kardia Sharon L. R., Kaufman Joel D., Kelly Tanika N., Kleinman Joel E.ORCID, Kooperberg CharlesORCID, Lee I-Te, Levy DanielORCID, Lutz Sharon M., Manichaikul Ani W., Martin Lisa W., Marx Olivia, McGarvey Stephen T.ORCID, Minster Ryan L.ORCID, Moll Matthew, Moussa Karine A., Naseri Take, North Kari E.ORCID, Oelsner Elizabeth C.ORCID, Peralta Juan M.ORCID, Peyser Patricia A.ORCID, Psaty Bruce M.ORCID, Rafaels Nicholas, Raffield Laura M., Reupena Muagututi’a Sefuiva, Rich Stephen S.ORCID, Rotter Jerome I., Schwartz David A.ORCID, Shadyab Aladdin H., Sheu Wayne H-H., Sims Mario, Smith Jennifer A.ORCID, Sun XiaoORCID, Taylor Kent D., Telen Marilyn J., Watson Harold, Weeks Daniel E.ORCID, Weir David R.ORCID, Yanek Lisa R.ORCID, Young Kendra A.ORCID, Young Kristin L.ORCID, Zhao WeiORCID, Hancock Dana B.ORCID, Jiang BiboORCID, Vrieze ScottORCID, Liu Dajiang J.ORCID
Abstract
AbstractMost transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.
Funder
U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019). 2. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021). 3. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016). 4. Nagpal, S. et al. TIGAR: an improved bayesian tool for transcriptomic data imputation enhances gene mapping of complex traits. Am. J. Hum. Genet 105, 258–266 (2019). 5. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|