Anti-fibrotic mechanism of SPP1 knockdown in atrial fibrosis associates with inhibited mitochondrial DNA damage and TGF-β/SREBP2/PCSK9 signaling

Author:

Du XianfengORCID,Liu Ting,Shen Caijie,He Bin,Feng Mingjun,Liu Jing,Zhuo Weidong,Fu Guohua,Wang Binhao,Xu Yanyan,Chu Huimin

Abstract

AbstractAtrial fibrosis occurs frequently with structural heart disease and is considered as a major cause of arrhythmia. Microarray-based profiling predicted the differential expression of SPP1 in atrial fibrosis. Herein, we aimed to analyze the role of shRNA-mediated SPP1 knockdown in the progression of atrial fibrosis as well as the downstream mechanism. In vivo model in mice and in vitro HL-1 cell model of atrial fibrosis were developed by the angiotensin II (Ang II) method, where SPP1 expression was validated by RT-qPCR. Gain- and loss-of-function experiments were performed in Ang II-induced mice and HL-1 cells to evaluate the effect of the SPP1/TGF-β/SREBP2/PCSK9 axis on cell viability, apoptosis, collagen production and mitochondrial DNA (mtDNA) damage in atrial fibrosis. Expression of SPP1, TGF-β, SREBP2 and PCSK9 was increased in Ang II-induced mice and HL-1 cells. Silencing of SPP1 inhibited the occurrence of atrial fibrosis, as reflected by attenuated cell viability and collagen production as well as increased cell apoptosis. Conversely, upregulated SPP1 enhanced atrial fibrosis, which was related to upregulation of TGF-β. In addition, TGF-β elevated the expression of SREBP2, which promoted mtDNA damage and the consequent atrial fibrosis by augmenting the expression of PCSK9. This study uncovers previously unrecognized pro-fibrotic activities of SPP1 in atrial fibrosis, which is achieved through activation of the TGF-β/SREBP2/PCSK9 signaling pathway and promotion of mtDNA damage.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3