Abstract
AbstractClaudin18.2 (CLDN18.2) is overexpressed in cancers of the digestive system, rendering it an ideal drug target for antibody-drug conjugates (ADCs). Despite many CLDN18.2-directed ADCs undergoing clinical trials, the inconclusive underlying mechanisms pose a hurdle to extending the utility of these agents. In our study, αCLDN18.2-MMAE, an ADC composed of an anti-CLDN18.2 monoclonal antibody and the tubulin inhibitor MMAE, induced a dose-dependent apoptosis via the cleavage of caspase-9/PARP proteins in CLDN18.2-positive gastric cancer cells. It was worth noting that autophagy was remarkably activated during the αCLDN18.2-MMAE treatment, which was characterized by the accumulation of autophagosomes, the conversion of autophagy marker LC3 from its form I to II, and the complete autophagic flux. Inhibiting autophagy by autophagy inhibitor LY294002 remarkably enhanced αCLDN18.2-MMAE-induced cytotoxicity and caspase-mediated apoptosis, indicating the cytoprotective role of autophagy in CLDN18.2-directed ADC-treated gastric cancer cells. Combination with an autophagy inhibitor significantly potentiated the in vivo antitumoral efficacy of αCLDN18.2-MMAE. Besides, the Akt/mTOR pathway inactivation was demonstrated to be implicated in the autophagy initiation in αCLDN18.2-MMAE-treated gastric cancer cells. In conclusion, our study highlighted a groundbreaking investigation into the mechanism of the CLDN18.2-directed ADC, focusing on the crucial role of autophagy, providing a novel insight to treat gastric cancer by the combination of CLDN18.2-directed ADC and autophagy inhibitor.
Publisher
Springer Science and Business Media LLC