Silicon photonics for high-speed communications and photonic signal processing

Author:

Zhou Xuetong,Yi Dan,Chan David W. U,Tsang Hon Ki

Abstract

AbstractLeveraging on the mature processing infrastructure of silicon microelectronics, silicon photonic integrated circuits may be readily scaled to large volume production for low-cost high-volume applications such as optical transceivers for data centers. Driven by the rapid growth of generative artificial intelligence and the resultant rapid increase in data traffic in data centers, new integrated optical transceivers will be needed to support multichannel high-capacity communications beyond 1.6Tb/s. In this paper, we review some of the recent advances in high performance optical waveguide grating couplers (WGC) as a key enabling technology for future high capacity communications. We describe the novel use of shifted-polysilicon overlay gratings on top of the silicon grating that enabled foundry manufactured chips to have fiber-chip coupling losses of under 1 dB. The use of mirror symmetry and resonant cavity enhancement in the design of gratings can increase the 1-dB optical bandwidths of grating couplers to over 100 nm. Multimode waveguide grating couplers (MWGC) may be designed for the selective launch of different modes channels in multimode fibers for mode-division-multiplexing (MDM) communications. The use of different modes or polarizations in optical fibers for high capacity communications requires the unscrambling of data lanes which are mixed together during the optical fiber transmission. We describe how silicon photonic circuits can be used to perform unitary matrix operations and unscramble the different data lanes in multichannel optical communication systems. We also describe recent advances on high-speed silicon modulators for enabling data rates of individual data lanes in an integrated optical transceiver beyond 300 Gb/s.

Funder

Hong Kong Research Grants Council, General Research Fund

Innovation and Technology Fund

Postdoctoral Hub-Innovation and Technology Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3