Combinatorial physicochemical stimuli in the three-dimensional environment of a hyaluronic acid hydrogel amplify chondrogenesis by stimulating phosphorylation of the Smad and MAPK signaling pathways

Author:

Ahn Jinsung,Arai Yoshie,Kim Byoung Ju,Seo Young-Kwon,Moon James J.,Shin Dong AhORCID,Choi BogyuORCID,Lee Soo-HongORCID

Abstract

AbstractThe chondrogenesis of stem cells and cartilage tissue regeneration are more efficient in a three-dimensional (3D) environment than in a two-dimensional (2D) environment. Although extensive studies have examined the effects of biochemical or physical cues alone, it is not fully understood how these biochemical and biophysical cues in the 3D environment are intertwined and orchestrated with chondrogenesis for cartilage tissue regeneration. In this study, we used photocrosslinked hyaluronic acid (HA), the extracellular matrix of cartilage, as a general 3D microenvironment to characterize the effects of dimensionality, localization of biochemical cues, regulation of biophysical cues, and external stimulation on chondrogenic signaling pathways in adipose-derived stem cells (hASCs). TGF-β3 was immobilized in HA hydrogels by ionic or covalent conjugation. The stiffness of the hydrogels was tuned by varying the crosslinking density, and an external stimulus for chondrogenesis was provided by ultrasound. The results revealed that the levels of chondrogenic signals in hASCs cultured in the 3D HA hydrogel depended on the presence of TGF-β3, and a reduction in the stiffness of the TGF-β3 covalent conjugated hydrogel increased the chance of interaction with encapsulated hASCs, leading to an increase in chondrogenic signals. External stimulation with ultrasound increased the interaction of hASCs with HA via CD44, thereby increasing chondrogenesis. Our results present a new understanding of the intertwined mechanisms of chondrogenesis in 3D hydrogels connecting TGF-β3 sequestration, mechanical properties, and ultrasound-based external stimulation. Overall, our results suggest that when designing novel biomaterials for tissue engineering, it is necessary to consider the combinatorial mechanism of action in 3D microenvironments.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3