Suppressed phonon conduction by geometrically induced evolution of transport characteristics from Brownian motion into Lévy flight

Author:

Kim Yongjoon,Kodama Takashi,Kim Yoonjin,Kim Brian S. Y.ORCID,Ko Changhyun,Lim JongwooORCID,Park WoosungORCID

Abstract

AbstractDespite extensive research on quasi-ballistic phonon transport, anomalous phonon transport is still observed in numerous nanostructures. Herein, we investigate the transport characteristics of two sets of samples: straight beams and nanoladders comprising two straight beams orthogonally connected with bridges. A combination of experiments and analysis with a Boltzmann transport model suggests that the boundary scattering within the bridges considerably dictates the distribution of phonon mean free paths, despite its negligible contribution to the net heat flux. Statistical analysis of those boundary scatterings shows that phonons with large axial angles are filtered into bridges, creating dead spaces in the line-of-sight channels. Such redistribution induces Lévy walk conduction along the line-of-sight channels, causing the remaining phonons within the bridges to exhibit Brownian motion. Phonon conduction in the nanoladders is suppressed below that of the straight beams with equivalent cross-sectional areas due to trapped phonons within the bridges. Our work reveals the origin of unusual thermal conductivity suppression at the nanoscale, suggesting a method to modulate phonon conduction via systematic nanostructuring.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3