Abstract
AbstractRoof leakage is a common phenomenon on rainy days and makes residents uncomfortable. Superhydrophobic materials are promising candidates to protect grass houses from rainwater. However, mechanical weakness, chemical corrosion, and UV light sensitivity are the three main challenges restricting these nonwetting materials from wider application in real life. Herein, we developed an inorganic–organic superhydrophobic paint (IOS-PA) for preparing a waterproof grass house. IOS-PA not only showed mechanical robustness and chemical anticorrosion but also displayed self-healing properties, anti-icing properties, and high and low temperature (150 °C and −196 °C) resistance. Photocatalysis was also achieved with IOS-PA, as demonstrated by organic matter (Nile red, methyl blue, and methyl orange) degradation. Moreover, extremely long-term UV resistance, i.e., resistance to UV irradiation (365 nm, 5.0 ± 0.6 mW/cm2) for 100 h and ambient sunlight for 8640 h (1 year), caused the conflicting properties of superhydrophobicity and photocatalysis to coexist in IOS-PA, further accomplishing self-cleaning for the removal of both dirt particles and organic contamination. Specifically, a grass house coated with IOS-PA exhibited favorable waterproof properties, indicating the potential to ensure comfortable living conditions for people living in undeveloped areas, even on rainy days. With a variety of excellent characteristics, IOS-PA, we believe, is advantageous for scalable production and practical application in reality.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献