Abstract
AbstractHybrid materials in optoelectronic devices can provide synergistic effects that complementarily enhance the properties of each component. Here, flexible high-performance graphene hybrid photodetectors (PDs) are developed by introducing gold nanostars (GNSs) and perovskites for strong light trapping with hot electron transfer and efficient light harvesting characteristics, respectively. While pristine graphene PDs do not exhibit discernible photodetection properties due to the very low photon absorption and ultrafast charge carrier recombination, graphene PDs functionalized with GNSs and a densely covered perovskite layer exhibit outstanding photoresponsive properties with a photoresponsivity (R) of 5.90 × 104 A W−1 and a specific detectivity of 1.31 × 1013 Jones, the highest values among those reported for perovskite-functionalized graphene PDs thus far. Moreover, we fabricated a flexible 10 × 10 PD array that shows well-resolved spatiotemporal mapping of light signals with excellent operational and mechanical stabilities at a bending radius down to 3 mm and in repeated bending tests for over 1000 cycles. Comprehensive analyses using finite-difference time-domain (FDTD) theoretical calculations, scanning near-field optical microscopy, and photoluminescence mapping reveal the effective light trapping effect of GNSs and the charge carrier transfer between the perovskite and graphene. This work provides a new design platform for flexible and high-performance photodetection systems.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献