Dinuclear Cu(I) molecular electrocatalyst for CO2-to-C3 product conversion

Author:

Sakamoto NaonariORCID,Sekizawa KeitaORCID,Shirai SoichiORCID,Nonaka TakamasaORCID,Arai TakeoORCID,Sato ShunsukeORCID,Morikawa TakeshiORCID

Abstract

AbstractMolecular metal complex catalysts are highly tunable in terms of their CO2 reduction performance by means of their flexible molecular design. However, metal complex catalysts have challenges in their structural stability and it has not been possible to synthesize high-value-added C3 products due to their inability to perform C–C coupling. Here we show a CO2 reduction reaction catalysed by a Br-bridged dinuclear Cu(I) complex that produces C3H7OH with high robustness during the reaction. The C–C coupling reaction mechanism was analysed by experimental operando surface-enhanced Raman scattering analysis, and theoretical quantum-chemical calculations proposed the formation of a C–C coupling intermediate species with substrate incorporation between the two Cu centres. Molecular design guidelines based on this discovery offer an approach to developing next-generation catalysts that generate multicarbon CO2 reduction products.

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3