Spin-reorientation driven emergent phases and unconventional magnetotransport in quasi-2D vdW ferromagnet Fe4GeTe2

Author:

Pal RijuORCID,Pal Buddhadeb,Mondal Suchanda,Sharma Rajesh O.ORCID,Das Tanmoy,Mandal Prabhat,Pal Atindra NathORCID

Abstract

AbstractNon-trivial spin textures driven by strong exchange interaction, magneto-crystalline anisotropy, and electron correlation in a low-dimensional magnetic material often lead to unusual electronic transitions. Through a combination of transport experiments in exfoliated nanoflakes down to 16 layers and first principle calculations, we unravel emergent electronic phases in quasi-2D van der Waals ferromagnet, Fe4GeTe2, possessing ferromagnetic TC ~ 270 K, along with a spin-reorientation transition (TSR ~ 120 K) with the change of magnetic easy axis. Two electronic transitions are identified. The first transition near TSR exhibits a sharp fall in resistivity, followed by a sign change in the ordinary Hall coefficient (R0), together with, maximum negative magnetoresistance (MR) and anomalous Hall conductivity. Another unusual electronic transition, hitherto unknown, is observed near ~ 40–50 K (TQ), where R0 again changes sign and below which, the resistivity shows a quadratic temperature dependence, and MR becomes positive. An analysis of the experimental data further uncovers the role of competing inelastic scattering processes in anomalous magnetotransport behavior. The density-functional theory based first-principle calculations unveil two possible magnetic phases, followed by a low-energy model Hamiltonian which captures the essence of these phases as well as explains the observed magnetotransport behavior. Thus, we demonstrate an interplay between magnetism and band topology and its consequence on electron transport in Fe4GeTe2, important for spintronic applications.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3