Abstract
AbstractCavity-integrated transition metal dichalcogenide (TMDCs) excitons have recently emerged as a promising platform to study strong light–matter interactions and related cavity quantum electrodynamics phenomena. Although this exciton-cavity system is typically modeled as coupled harmonic oscillators, to account for the rich solid-state environment, the effect of exciton–phonon interaction needs to be incorporated. We model the system by including a phenomenological deformation potential for exciton–phonon interactions and we elucidate the experimentally measured preferential coupling of the excitonic photoluminescence to the cavity modes red-detuned with respect to the exciton resonance. Furthermore, we predict and experimentally confirm the temperature dependence of this preferential coupling. By accurately capturing the exciton–phonon interaction, our model illuminates the potential of cavity-integrated TMDCs for the development of low-power classical and quantum technologies.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献