Abstract
AbstractMulti principal element alloys (MPEAs) comprise an atypical class of metal alloys. MPEAs have been demonstrated to possess several exceptional properties, including, as most relevant to the present study a high corrosion resistance. In the context of MPEA design, the vast number of potential alloying elements and the staggering number of elemental combinations favours a computational alloy design approach. In order to computationally assess the prospective corrosion performance of MPEA, an approach was developed in this study. A density functional theory (DFT) – based Monte Carlo method was used for the development of MPEA ‘structure’; with the AlCrTiV alloy used as a model. High-throughput DFT calculations were performed to create training datasets for surface activity/selectivity towards different adsorbate species: O2-, Cl- and H+. Machine-learning (ML) with combined representation was then utilised to predict the adsorption and vacancy energies as descriptors for surface activity/selectivity. The capability of the combined computational methods of MC, DFT and ML, as a virtual electrochemical performance simulator for MPEAs was established and may be useful in exploring other MPEAs.
Funder
United States Department of Defense | United States Navy | Office of Naval Research
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献