A computational approach for mapping electrochemical activity of multi-principal element alloys

Author:

Yuwono Jodie A.ORCID,Li XinyuORCID,Doležal Tyler D.ORCID,Samin Adib J.,Shi Javen Qinfeng,Li Zhipeng,Birbilis Nick

Abstract

AbstractMulti principal element alloys (MPEAs) comprise an atypical class of metal alloys. MPEAs have been demonstrated to possess several exceptional properties, including, as most relevant to the present study a high corrosion resistance. In the context of MPEA design, the vast number of potential alloying elements and the staggering number of elemental combinations favours a computational alloy design approach. In order to computationally assess the prospective corrosion performance of MPEA, an approach was developed in this study. A density functional theory (DFT) – based Monte Carlo method was used for the development of MPEA ‘structure’; with the AlCrTiV alloy used as a model. High-throughput DFT calculations were performed to create training datasets for surface activity/selectivity towards different adsorbate species: O2-, Cl- and H+. Machine-learning (ML) with combined representation was then utilised to predict the adsorption and vacancy energies as descriptors for surface activity/selectivity. The capability of the combined computational methods of MC, DFT and ML, as a virtual electrochemical performance simulator for MPEAs was established and may be useful in exploring other MPEAs.

Funder

United States Department of Defense | United States Navy | Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3