Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation

Author:

Dhimish MahmoudORCID,Tyrrell Andy M.

Abstract

AbstractPotential-induced degradation (PID) of photovoltaic (PV) modules is one of the most severe types of degradation in modern modules, where power losses depend on the strength of the electric field, the temperature and relative humidity, and the PV module materials. Previous studies have only considered single effects of PID; however, this work investigates the power losses, development of hotspots, mm-level defects, and the performance ratio (PR) of 28 PID affected PV modules. Following a standard PID experiment, it was found that (i) the average power loss is 25%, (ii) hotspots were developed in the modules with an increase in the surface temperature from 25 to 45 °C, (iii) 60% of the examined PV modules failed the reliability test following IEC61215 standard, and (iv) the mean PR ratio is equivalent to 71.16%.

Funder

University of York

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3