A review of biomaterial degradation assessment approaches employed in the biomedical field

Author:

Mndlovu Hillary,Kumar PradeepORCID,du Toit Lisa C.,Choonara Yahya E.ORCID

Abstract

AbstractThe biological response to biomaterials plays a crucial role in selecting suitable materials for the formulation and development of tissue engineering platforms. Biodegradation is one of the properties that is considered in selecting appropriate biomaterials for biomedical applications. Biodegradation is the process of breaking down large molecules into smaller molecules with/without the aid of catalytic enzymes. The biodegradation process is crucial in the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) process of biomaterials and small molecules in the body. Degradation of biomaterials can be followed by assessing the physical, mechanical, and chemical attributes of biomaterials. There are several techniques/parameters that can be targeted when studying the degradation of biomaterials, with gravimetric analysis, surface erosion, and morphological changes being the largely employed techniques. However, the techniques present a few limitations, such as technical errors and material solubility being mistaken for degradation, and these techniques can infer but not confirm degradation as they do not provide the chemical composition of fragmenting/fragmented molecules. The American Society for Testing and Materials (ASTM) guidelines provide techniques and parameters for assessing biodegradation. However, the ASTM guidelines for degradation assessment approaches and techniques need to be updated to provide sufficient evidence to draw conclusive decisions regarding the degradation of biomaterials. In this review, the degradation assessment approaches and techniques are critically reviewed about their advantages and disadvantages, and to provide suggestions on how they can still play a role in assessing the degradation of biomaterials. This review could assist researchers employ cost-effective, efficient, and multiple degradation assessment techniques to evaluate and provide sufficient information about the degradation of biomaterials. Suggested future ASTM guidelines for assessing biodegradation should include measuring parameters (such as chemical, mechanical, or physical attributes of biomaterials) in real-time, employing non-invasive, continuous, and automated processes.

Funder

National Research Foundation

South African Medical Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3