Author:
Pedersen Kasper S.,Bendix Jesper,Tressaud Alain,Durand Etienne,Weihe Høgni,Salman Zaher,Morsing Thorbjørn J,Woodruff Daniel N.,Lan Yanhua,Wernsdorfer Wolfgang,Mathonière Corine,Piligkos Stergios,Klokishner Sophia I.,Ostrovsky Serghei,Ollefs Katharina,Wilhelm Fabrice,Rogalev Andrei,Clérac Rodolphe
Abstract
Abstract
New exotic phenomena have recently been discovered in oxides of paramagnetic Ir4+ ions, widely known as ‘iridates’. Their remarkable properties originate from concerted effects of the crystal field, magnetic interactions and strong spin-orbit coupling, characteristic of 5d metal ions. Despite numerous experimental reports, the electronic structure of these materials is still challenging to elucidate, and not attainable in the isolated, but chemically inaccessible, [IrO6]8– species (the simplest molecular analogue of the elementary {IrO6}8− fragment present in all iridates). Here, we introduce an alternative approach to circumvent this problem by substituting the oxide ions in [IrO6]8− by isoelectronic fluorides to form the fluorido-iridate: [IrF6]2−. This molecular species has the same electronic ground state as the {IrO6}8− fragment, and thus emerges as an ideal model for iridates. These results may open perspectives for using fluorido-iridates as building-blocks for electronic and magnetic quantum materials synthesized by soft chemistry routes.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献