Innovative Noise Reduction Strategies in Ultrasound Images Using Shearlet Transform and Bayesian Thresholding

Author:

L C Meena1,Prathap P M Joe2

Affiliation:

1. Research Scholar, Department of Computer Science and Engineering, R. M. D. Engineering College, Thiruvallur District, Affiliated by Anna University, Chennai, India

2. IEEE Senior Member and Professor, Department of Computer Science and Engineering, R. M. D. Engineering College, Thiruvallur District, Affiliated by Anna University, Chennai, India

Abstract

Uterine fibroids are prevalent benign tumors affecting women, often diagnosed through imaging modalities such as ultrasound. Ultrasound imaging is a widely used diagnostic modality for uterine fibroid due to its non-invasive nature. However, the images obtained often suffer from speckle noise, which can obscure fine details and complicate accurate diagnosis. Existing methods for removing speckle noise have limitations, including losing texture and edge information and not being able to handle low frequency noises. This paper presents a novel approach for speckle noise reduction by combining Shearlet Transform with Bayesian thresholding. The proposed method aims to achieve superior noise reduction while retaining important image features crucial for accurate diagnosis. Experimental results demonstrate the efficacy of the Shearlet Transform and Bayesian thresholding in significantly reducing speckle noise, enhancing image quality, and improving the interpretability of ultrasound images. Performance metrics like Mean Squared Error (MSE), Structural Similarity Index and Peak Signal to Noise Ratio (PSNR) helps to validate our proposed method. Reducing speckle noise in ultrasound images of uterine fibroids contributes to more accurate diagnosis and improves surgical treatment outcomes.

Publisher

FOREX Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3