Development of an Improved Model for Assessment of Hot Spot Temperature of Current Transformers

Author:

Ajenikoko Ganiyu Adedayo1,Badmus Emmanuel Babatunde2

Affiliation:

1. Department of Electronic & Electrical Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria, ajeedollar@gmail.com

2. Department of Electronic & Electrical Engineering, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria

Abstract

Current transformers form important components that make up a large portion of capital investments. Failure of a current transformer results in an adverse effect in the operation of transmission networks which causes an increase in the power system operation cost and inability to deliver electricity with absolute reliability. The age of a transformer is the life of its insulation, majorly, paper insulation. Transformer aging can be evaluated using the hot spot temperature which has the effect of reducing the insulation life of transformers. Previous researchers have developed models for assessment of top-oil temperature of current transformers. Such models have the limitation that they do not accurately account for the variation effect in ambient temperature and hence not applicable for an on-line monitoring system. This research paper develops an improved model for assessment of hot spot temperature from the IEEE top-oil rise temperature model by considering the ambient temperature at the first-order characterization using appropriate mathematical notations. The ambient temperature, top oil rise over temperature and winding hot spot rise over temperature were used as input parameters for the development of the improved hot spot temperature model by considering the final temperature state since the time-rate-of change in top-oil temperature is driven by the difference between the exits top-oil temperature for ambient temperature variation. The improved model was then implemented in MATLAB to compute the hot spot temperature for 24-hour load cycle. The result of the improved model shows that the least and highest value of the hot spot temperature are 630C and 105.40C respectively indicating a retardation in the aging process of the transformers. The improved model helps to minimize the risk of failure and to extend the life span of transformers thereby controlling the hot spot temperature rise and top oil temperature.

Publisher

FOREX Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3