Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis

Author:

FAHLGREN A1,HAMMARSTRÖM S1,DANIELSSON Å2,HAMMARSTRÖM M-L1

Affiliation:

1. Department of Immunology

2. Department of Medicine, Section for Gastroenterology, Umeå University, 901 85 Umeå, Sweden

Abstract

SUMMARY The impact of chronic inflammation on the expression of human α-defensins 5 and 6 (HD-5, HD-6), β-defensins 1 and 2 (hBD-1, hBD-2) and lysozyme in epithelial cells of small and large intestine was investigated. Intestinal specimens from 16 patients with ulcerative colitis (UC), 14 patients with Crohn's disease (CD) and 40 controls with no history of inflammatory bowel disease were studied. mRNA expression levels of the five defence molecules were determined in freshly isolated epithelial cells by real-time quantitative RT-PCR. Specific copy standards were used allowing comparison between the expression levels of the different defensins. HD-5 and lysozyme protein expression was also studied by immunohistochemistry. Colonic epithelial cells from patients with UC displayed a significant increase of hBD-2, HD-5, HD-6 and lysozyme mRNA as compared to epithelial cells in controls. Lysozyme mRNA was expressed at very high average copy numbers followed by HD-5, HD-6, hBD-1 and hBD-2 mRNA. HD-5 and lysozyme protein was demonstrated in metaplastic Paneth-like cells in UC colon. There was no correlation between hBD-2 mRNA levels and HD-5 or HD-6 mRNA levels in colon epithelial cells of UC patients. Colonic epithelial cells of Crohn's colitis patients showed increased mRNA levels of HD-5 and lysozyme mRNA whereas ileal epithelial cells of Crohn's patients with ileo-caecal inflammation did not. Chronic inflammation in colon results in induction of hBD-2 and α-defensins and increased lysozyme expression. hBD-1 expression levels in colon remain unchanged in colitis. The high antimicrobial activity of epithelial cells in chronic colitis may be a consequence of changes in the epithelial lining, permitting adherence of both pathogenic bacteria and commensals directly to the epithelial cell surface.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3