Comprehensive analyses reveal molecular and clinical characteristics of RNA modification writers across 32 cancer types

Author:

Ding Jiayu,Shen Hao,Ji Jiaying,Li Jiaxing,Kuang Wenbin,Shi Zhongrui,Wang Dawei,Chen Yuanyuan,Wan Didi,Wang Xiao,Yang Peng

Abstract

<p class="MsoNormal" style="text-align: justify;"><span lang="EN-US" style="font-size: 12pt; font-family: Nunito;">Adenosine alterations to RNA, which are largely determined by RNA modification writers (RMWs), are critical for cancer growth and progression. These RMWs can catalyze different types of adenosine modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), alternative polyadenylation (APA), and adenosine-to-inosine (A-to-I) RNA editing. These modifications have profound effects on gene expression and function, such as immune response, cell development. Despite this, the clinical effects of RMW interactive genes on these cancers remain largely unclear. A comprehensive analysis of the clinical impact of these epigenetic regulators in pan-cancer requires further comprehensive exploration. Here, we systematically profiled the molecular and clinical characteristics of 26 RMWs across 33 cancer types using multi-omics datasets and validated the expression level of some RMWs in various cancer lines. Our findings indicated that a majority of RMWs exhibited high expression in diverse cancer types, and this expression was found to be significantly associated with poor patient outcomes. In the genetic alterations, the amplification and mutation of RMWs were the dominant alteration events. Consequently, the RNA Modification Writer Score (RMW score) was established as a means to assess the risk of RMWs in pan-cancer. We found that 27 of 33 cancers had significantly higher scores compared with normal tissues, and it was significantly correlated with prognosis. We also evaluated their impact on the tumor microenvironment and the response to immunotherapy and targeted therapy. These findings verified the important role of RMWs in different aspects of cancer biology, and provided biomarkers and personalized therapeutic targets for cancer.</span></p>

Publisher

Anser Press Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3