Factors regulating lignocellulolytic microbes, their degrading enzymes, and heterotrophic respiration in oil palm cultivated peatlands

Author:

Hadi Muhammad Nurul,Pulunggono Heru Bagus,Indriyati Lilik Tri,Widiastuti Happy,Zulfajrin Moh

Abstract

Even though their role in mediating tropical peat decomposition and GHG emissions had been widely recognized, information concerning lignocellulolytic microbes, their degrading enzyme ability, and interconnection with soil physicochemical properties and peat heterotrophic respiration on mature oil palm plantation/OPP block level were rudimentary. This study evaluated the effect of sampling depth (0-30, 30-60, and 60-90 cm), OPP management zone (fertilization circle/FTC, frond stack/FRS, and harvesting path/HVP), and peat physicochemical properties on the lignocellulolytic bacteria and fungi, their degrading enzymes activities and peat heterotrophic respiration/Rh using principal component analysis/PCA, multiple linear regression/MLR, and generalized linear mixed effect models/GLMM. This study found that the soil microbiological and physicochemical properties varied widely. Dominant lignocellulolytic bacterial population and their cellulase enzyme activity were higher than fungi, regardless of sampling depth and management zone. PCA and GLMM analyses showed the significant importance of sampling depth and management zone in governing lignocellulolytic microbial population, their enzyme activities, and Rh. Microbial population and cellulase activity were also remarkably affected by the interaction of all studied factors. Peat chemical properties (pH and total Mn) controlled the natural variance of lignocellulolytic microbes and their enzymes, whereas total K regulate Rh. This study suggested that the research on microbiological-related GHG mitigation in OPP should be focused on managing the fungal population and cellulase enzyme activity at the peat surface (0-30 cm) and fertilization circle.

Publisher

Faculty of Agriculture, Brawijaya University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3