Apple Leaf Disease Classification Using Image Dataset: a Multilayer Convolutional Neural Network Approach

Author:

Mahamudul Hashan AntorORCID,Md Rakib Ul Islam Rizu,Avinash Kumar

Abstract

Agriculture is one of the prime sources of economic growth in Russia; the global apple production in 2019 was 87 million tons. Apple leaf diseases are the main reason for annual decreases in apple production, which creates huge economic losses. Automated methods for detecting apple leaf diseases are beneficial in reducing the laborious work of monitoring apple gardens and early detection of disease symptoms. This article proposes a multilayer convolutional neural network (MCNN), which is able to classify apple leaves into one of the following categories: apple scab, black rot, and apple cedar rust diseases using a newly created dataset. In this method, we used affine transformation and perspective transformation techniques to increase the size of the dataset. After that, OpenCV crop and histogram equalization method-based preprocessing operations were used to improve the proposed image dataset. The experimental results show that the system achieves 98.40% training accuracy and 98.47% validation accuracy on the proposed image dataset with a smaller number of training parameters. The results envisage a higher classification accuracy of the proposed MCNN model when compared with the other well-known state-of-the-art approaches. This proposed model can be used to detect and classify other types of apple diseases from different image datasets.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Reference36 articles.

1. А.И. Кузин, Н.Я. Каширская, Кочкина А.М., Кушнер А.В. Коррекция нормы калийной фертигации яблони (Malus domestica Borkh.) в средней полосе России в период вегетации // Растения. 9, нет. 10, с. 1366, октябрь 2020 г., doi: 10.3390/plants9101366.

2. Тай А.П.К., Мартин М.В. и Хилд С.Л. Угроза будущей глобальной продовольственной безопасности от изменения климата и загрязнения воздуха озоном // Nature Clim Change. 4, нет. 9, стр. 817–821, сентябрь 2014 г., doi: 10.1038/nclimate2317.

3. Р.Н. Стрэндж и П.Р. Скотт, «Болезни растений: угроза глобальной продовольственной безопасности», Annu. Преподобный Phytopathol., vol. 43, нет. 1. С. 83–116, сентябрь 2005 г., doi: 10.1146/annurev.phyto.43.113004.133839.

4. Аравинд К.Р., Раджа П., Мукеш К.В., Анируд Р., Ашивин Р. и Щепански К., «Классификация болезней кукурузы с использованием набора признаков и многоклассовой машины опорных векторов», 2-я Международная конференция по изобретательским системам, 2018 г. and Control (ICISC), Coimbatore, январь 2018 г., стр. 1191–1196. doi: 10.1109/ICISC.2018.8398993.

5. В.П. Кур и С. Арора, «Машина опорных векторов на основе оптимизации роя частиц (P-SVM) для сегментации и классификации растений», IEEE Access, vol. 7, стр. 29374–29385, 2019, doi: 10.1109/ACCESS.2019.2901900.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer vision neural networks in support systems for making decision on a smart farm;Вестник российской сельскохозяйственной науки;2024-05-20

2. Method for Maximizing the Number of Detected Keypoints on Homogeneous Underlying Surfaces;Lecture Notes in Computer Science;2024

3. Smart Horticulture Based on Image Processing: Guava Fruit Disease Identification;2023 IEEE 21st Student Conference on Research and Development (SCOReD);2023-12-13

4. Automated Human Facial Emotion Recognition System Using Depthwise Separable Convolutional Neural Network;2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2023-07-13

5. Сравнение и отбор ситуаций в системах вывода решений на прецедентах для «умной» фермы;Informatics and Automation;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3