Цветовая кодировка кубитных состояний

Author:

Surov Ilya

Abstract

Difficulties in algorithmic simulation of natural thinking point to the inadequacy of information encodings used to this end. The promising approach to this problem represents information by the qubit states of quantum theory, structurally aligned with major theories of cognitive semantics. The paper develops this idea by linking qubit states with color as fundamental carrier of affective meaning. The approach builds on geometric affinity of Hilbert space of qubit states and color solids, used to establish precise one-to-one mapping between them. This is enabled by original decomposition of qubit in three non-orthogonal basis vectors corresponding to red, green, and blue colors. Real-valued coefficients of such decomposition are identical to the tomograms of the qubit state in the corresponding directions, related to ordinary Stokes parameters by rotational transform. Classical compositions of black, white and six main colors (red, green, blue, yellow, magenta and cyan) are then mapped to analogous superposition of the qubit states. Pure and mixed colors intuitively map to pure and mixed qubit states on the surface and in the volume of the Bloch ball, while grayscale is mapped to the diameter of the Bloch sphere. Herewith, the lightness of color corresponds to the probability of the qubit’s basis state «1», while saturation and hue encode coherence and phase of the qubit, respectively. The developed code identifies color as a bridge between quantum-theoretic formalism and qualitative regularities of the natural mind. This opens prospects for deeper integration of quantum informatics in semantic analysis of data, image processing, and the development of nature-like computational architectures.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Reference60 articles.

1. Налимов В.В. Спонтанность сознания: вероятностная архитектура смыслов и смысловая архитектоника личности. М: Прометей, 1989. 288 с.

2. Петренко В.Ф. Основы психосемантики. М: Эксмо, 2010. 480 с.

3. Кузнецов О.П. Когнитивная семантика и искусственный интеллект // Искусственный интеллект и принятие решений. 2012. № 4. C. 32–42.

4. Кузнецов О.П. Модели голографических процессов обработки информации в нейронных сетях // Автомат. и телемех. 1993. Т. 7. С. 160–172.

5. Дурнев Р.А., Жданенко И.В., Крюков К.Ю. Будущее искусственного интеллекта в спасательном деле // Технологии гражданской безопасности. 2018. Т. 15. № 4. С. 25–29.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3