Machine Learning Model for Determination of the Optimal Strategy in an Online Auction

Author:

Ivashko Anna,Safonov GeorgyORCID

Abstract

We apply a machine learning model to determine the optimal strategy in an online auction for the rent of computing resources using the best-choice model. The best-choice model allows clients to minimize the expected cost of renting a computing resource based on the spot price distribution function. The spot price dynamics platform is investigated. The most suitable price distributions in an auction are the normal distribution and its mixtures. In this case, the problems of determining the number of components in the mixture and estimating its parameters arise. One of the well-known methods for determining the number of components in a mixture of normal distributions is the BIC criterion. The EM algorithm is a basic tool for estimating the parameters of a mixture of distributions if we know the number of components. However, parameter estimation by this method takes more time when both the sample size and the number of components of the mixture increase. To automate and expedite the process of determining the number of components for a mixture of normal distributions and estimating its parameters, a classification machine learning model based on a convolutional neural network is developed. The results of the model training and validation are presented. The suggested model is compared with other algorithms which do not use neural networks. The results show that the suggested model performs well in determining the most appropriate number of components for a mixture of normal distributions and in reducing the time spent on applying the EM algorithm to estimate its parameters. This model can be used in different arias, for example, in finance or for determination of the optimal strategy in an online auction for the rent of computing resources.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Reference26 articles.

1. Myerson R.B. Optimal Auction Design // Mathematics of Operations Research. 1981. vol. 6. no. 1. pp. 58–73.

2. Сонин К.И. Основы теории аукционов (Нобелевская премия по экономике 2020 года) // Вопросы экономики. 2021. No 1, C. 5–32.

3. Савватеев А.В., Филатов А.Ю. Теория и практика аукционов // Вестник ВГУ. Серия: Экономика и управление. 2018. No 3. C. 119–131.

4. Wang Y., Liu X., Zheng Z., Zhang Z., Xu M., Yu C., Wu F. On Designing a Two-stage Auction for Online Advertising // WWW ’22: Proceedings of the ACM Web Conference. 2022. pp. 90–99.

5. Shmueli G., Russo R.P., Jank W. Modeling Bid Arrivals in Online Auctions. Robert H. Smith School Research Paper No. RHS-06-001, 2004. Available at SSRN: https://ssrn.com/abstract=902868 (accessed 26.07.2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3