Investigating the Influence of Heavy Oil Recovery by In Situ Combustion during Air Injection as EOR Technique

Author:

Abstract

Heavy oil is one of the most useful energy resources specially in the times of crises when other resources are not present in profusion. However, Occurrence of heavy oil in unconsolidated sands is one the most challenging factor to recover the heavy oil. Therefore, in this study the main focus is derived towards the extraction of heavy oil with optimistic procedure called air injection. For the research, a reactor assembly was developed for the experimental work on air (21% oxygen) injection into heavy oil (12.59 °API) reservoir. Total 13 kinetics runs were conducted on unconsolidated cores by varying the parameters involved system pressure, flow rate (air flux), oxidation temperature (heat input), and rock formation (sand matrix). It was found that the process is very dependent on operating conditions employed, as oxygen consumption rate was very dependent on air flux. Increase of air flux from 15.19 to 22.78 m3/m2-hr resulted in slightly increasing rates of oxygen consumption over the temperature range under investigation. The temperature difference also shows great effect on the high temperature oxidation. The pressure and porous media also have great impact on the combustion behavior. The influence of individual parameter was obtained from analysis of the inlet oxygen and composition of flue gases from the combustion cell. Indeed, the oxygen conversion was too less to evaluate the kinetic data at temperature less than 250 °C while for oxidation reactions, the oxygen statistics analyzed from temperature above than 350 °C. The experimental results reveal that the average maximum peak temperature was 440 °C, and the oxidation reaction process at high temperature was very effective in terms of produced carbon oxides with an average percentage of 9.5% CO2, 5.5% CO in flue gases. Oil displacement was observed from the analysis of flue gases, consequently; incremental oil recovery was achieved between 56%-80% under high temperature oxidation (HTO) conditions.

Publisher

Balochistan University of Information Technology, Engineering and Management Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3