1. Koshkarov A. V., Koshkarova T. A. Tekhnologii sbora i analiza dannyh v cifrovom sel'skom hozyajstve: bar'ery i usloviya dlya vnedreniya i ispol'zovaniya. [Koshkarov A.V., Koshkarova T.A. Technologies for collecting and analyzing data in digital agriculture: barriers and conditions for implementation and use], Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Estestvennye i Tekhnicheskie Nauki [Modern science: current problems of theory and practice. Series: Natural and Technical Sciences]. 2018. №05. P. 100-104.
2. Zayac O.A., Nazarova YU.N., Strizhakova E.A., Pen'kova R.I. Tekhnologii Big Data v sel'skom hozyajstve. [Zayats O.A., Nazarova Yu.N., Strizhakova E.A., Penkova R.I. Big Data technologies in agriculture], Fundamental research. 2022. №7. P. 35-40.
3. Xu X., Gao P., Zhu X., Guo W., Ding J., Li C., Wu X. Design of an integrated climatic assessment indicator (ICAI) for wheat production: a case study in Jiangsu Province, China, Ecological Indicators. 2019. Vol. 101. P. 943-953.
4. Alpaydin E. Introduction to Machine Learning, The MIT Press. Cambridge. 2014. 3rd edition. p. 3-4. [Electronic resource]. URL: url{https://dl.matlabyar.com/siavash/ML/Book/Ethem%20Alpaydin-Introduction%20to%20Machine%20Learning-The%20MIT%20Press%20(2014).pdf} (Accessed: 20.02.2024).
5. Van K. T., Kassahun A., Catal C. Crop yield prediction using machine learning: A systematic literature review, Computers and Electronics in Agriculture. 2020. Vol. 177. P. 105709. DOI: url{https://doi.org/10.1016/j.compag.2020.105709}.