Abstract
Los modelos matemáticos para predecir biomasa son en la actualidad una opción que facilita y mejora el cálculo de la capacidad de mitigación del cambio climático de un ecosistema, pues generan información fundamental para establecer índices nacionales de almacenamiento de carbono. El objetivo de este estudio fue evaluar la biomasa de los distintos componentes del árbol (hojas, ramas, fuste, raíz) por medio de método destructivo e indirecto para construir modelos predictivos de biomasa y carbono, generados por medio del método de mínimos cuadrados ordinarios, cuyo diámetro normal fue la variable regresora. Las ecuaciones seleccionadas explicaron más del 94 % de la variabilidad observada en biomasa o carbono, con errores de estimados inferiores al 5 %. El fuste aportó el 57.4 % a la biomasa total del árbol y las hojas el 5 %. La fracción de carbono fue muy similar entre los componentes leñosos (ramas-fuste-raíz), variando de 44.9 % a 45.7 % y en las hojas alcanzó el 40.7 %.
Publisher
Universidad Distrital Francisco Jose de Caldas
Subject
Nature and Landscape Conservation,Soil Science,Forestry
Reference43 articles.
1. Basu, P. (2009). A green investment. If growing forests in India can generate lucrative carbon credits, then why isn’t everyone planting trees? News Feature. Nature, 457, 8, 144-146.
2. Blujdea, V. N. B., Pilli, R., Dutca, I., Ciuvat, L. y Abrudan, V. (2012). Allometric biomass equations for Young broadleaved trees in plantations in Romania. Forest Ecology and Management, 264, 172-184. http://doi.org/10.1016/j.foreco.2011.09.042
3. Castro, F. y Raigosa, J. (2000). Crecimiento y propiedades físico-mecánicas de la madera de teca (Tectona grandis) de 17 años de edad en San Joaquín de Abangares, Costa Rica. Agronomía Costarricense, 24(2), 07-23.
4. Cerruto, S., Boechat, C., Fehrmann, L., Gonçalves, L. A. y von Gadow, K. (2015). Aboveground and belowground biomass and carbon estimates for clonal eucalyptus trees in Southeast Brazil. Revista Arvore. Minas Gerais: Sociedade de Investigações Florestais, 39, 2, 353-363. https://doi.org/10.1590/0100-67622015000200015
5. Chave, J., Condit, R., Aguilar, S., Hernández, A., Lao, S. y Pérez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society B: Biological Ciences, (359)1443, 409-420. http://doi.org/10.1098/rstb.2003.1425
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献