CO2 monitor for measurement of ventilation in closed environments, COVID-19 prevention, and improvement of work performance

Author:

Vorobioff JuanORCID,Boggio Norberto GabrielORCID,Checozzi Federico RicardoORCID,Pinto Garrón Tamara,Rinaldi CarlosORCID

Abstract

Objective: Humans produce and exhale CO2, thus the concentration of this gas increases in closed environments. The CO2 concentration of air is often used as a reference to measure the ventilation rate. The typical outdoor CO2 concentration is approximately 400 ppm, although it can be as high as 500 ppm. Concentrations greater than 20000 ppm result in deep breathing, higher than 100000 ppm cause visual disturbances and tremors with possible loss of consciousness and over 250000 ppm may cause death. In buildings with no change on their ventilation rate, high CO2 concentrations have negative effects on decision making and working performance. At 1000 ppm, performance is significantly reduced in six of nine decision-making metrics compared to 600 ppm. In this work, a CO2 flexible monitor is designed to measure ventilation in closed environments. Methodology: Electrolytic and infrared CO2 sensors with a detection range of 350 to up to 10000 ppm were used. The used sensors have good sensitivity and selectivity to CO2. The gas monitor has a simple calibration system, whereby softwareautomatically adjusts the calibration curve parameters after circulating clean air. The design of a gas bench used to verify sensor calibration is also shown. Results: A set of measurements were performed with electrochemical gas sensors and infrared (IR) gas sensors to test the functionality of the equipment. Experimental work has shown sensors have a satisfactory response for this application. The margins of error are +5 % of the reading value. Conclusions: A low cost, flexible gas monitor for indoor environments like schools, offices, laboratories, and industries was designed in this work. Due to the flexible design, a network of gas monitors strategically distributed in the different spaces of the buildings is proposed. Fundings: Universidad Tecnológica Nacional. Comisión Nacional de Energía Atómica. Buenos Aires, Argentina 

Publisher

Universidad Distrital Francisco Jose de Caldas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3