Kinematics, Kinetics and Muscle Activity Analysis during Single-leg Drop-jump Landing Followed by an Unanticipated Task: Focusing on Differences in Neurocognitive Function

Author:

Shibata SatoshiORCID,Takemura Masahiro,Miyakawa Shumpei

Abstract

Background Lower neurocognitive function is a risk factor for anterior cruciate ligament (ACL) injury. However, the mechanism by which lower neurocognitive function increases the risk of ACL injury remains unclear. Purpose To clarify the effect of differences in neurocognitive function on landing mechanics during a single-leg drop-jump landing motion followed by an unanticipated task. Study Design Cross-sectional study Methods Fifteen collegiate female athletes were recruited (20.1 ± 1.3 years, 166.6 ± 7.3 cm, 60.6 ± 6.9 kg) and were divided into two groups (the high-performance (HP) group and the lower-performance (LP) group) using the median Symbol Digit Modalities Test (SDMT) score. Three-dimensional motion analysis was employed for the analysis during the experimental task of a single-leg drop-jump followed by an unanticipated landing task from a 30-cm high box. Joint angular changes of the trunk, pelvis, hip, and knee were calculated within the interval from initial contact (IC) to 40ms. Knee and hip moments were calculated as the maximum values within the interval from IC to 40ms. Surface electromyography data from key muscles were analyzed 50ms before and after IC. Independent t-tests were used to compare the effects of different neurocognitive function on the measurement items. Statistical significance was set at p < 0.05. Results The SDMT score was significantly higher in HP group (HP: 77.9 ± 5.5; LP: 66.0 ± 3.4; p < 0.001). The LP group had a significantly greater trunk rotation angular change to the stance leg side (HP: 0.4 ± 0.8; LP: 1.2 ± 0.4; p = 0.020). There were no significant differences between the two groups in terms of joint moments, and muscle activities. Conclusion Differences in neurocognitive function by SDMT were found to be related to differences in motor strategies of the trunk in the horizontal plane. Although trunk motion in the sagittal and frontal planes during single-leg drop-jump landing increases the ACL injury risk by affecting knee joint motion, the effect of trunk motion in the horizontal plane remains unclear. Level of Evidence 3 © The Authors

Publisher

International Journal of Sports Physical Therapy

Subject

Rehabilitation,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Reference39 articles.

1. Symbol Digit Modalirties Test;Smith Aaron,1982

2. The effects of anticipation on the mechanics of the knee during single-leg cutting tasls: A systematic review;Thomas G Almonroeder;Int J Sports Phys Ther,2015

3. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis;Ralph HB Benedict;Multiple Sclerosis Journal,2017

4. Anticipatory effects on knee joint loading during running and cutting maneuvers;THOR F. Besier;Medicine and Science in Sports and Exercise,2001

5. Anterior cruciate ligament strain in vivo: a review of previous work;B D Beynnon;The American Journal of Sports Medicine,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3