Affiliation:
1. Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering,University of Sheffield,United Kingdom of Great Britain and Northern Ireland
Abstract
Engineered synthetic liners on their own cannot protect the environment and human health against landfill leachate pollution. Despite their initial impermeability, they are susceptible to failure during and after installation and have no attenuation properties. Conversely, natural clay liners can attenuate leachate pollutants by sorption, redox transformations, biodegradation, precipitation, and filtration, decreasing the pollutant flux. Depending on the clay, significant differences exist in their shrinkage potential, sorption capacity, erosion resistance and permeability to fluids, which affects the suitability and performance of the potential clay liner. Here, the physico-chemical, mineralogical and geotechnical characteristics of four natural clayey substrata were compared to discuss their feasibility as landfill liners. To study their chemical compatibility with leachate and rainwater, hydraulic conductivities were measured every ≈2 days spread over 7 weeks of centrifugation at 25 gravities. At field-scale, this is equivalent to every 3.4 yrs spread over 80 yrs. All the clayey substrata had favourable properties for the attenuation of leachate pollutants, although different management options should be applied for each one. London Clay (smectite-rich) is the best material based on the sorption capacity, hydraulic conductivity and low erodibility, but has the greatest susceptibility to excessive shrinkage and alterable clay minerals that partially collapse to illitic structures. Oxford Clay (illite rich) is the best material for buffering acid leachates and supporting degradation of organic compounds. The Coal Measures Clays (kaoline-rich) have the lowest sorption capacity, but also the lowest plasticity and have the most resistant clay minerals to alteration by leachate exposure.
Subject
Waste Management and Disposal,Environmental Chemistry,Environmental Engineering
Reference88 articles.
1. The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills
2. Allen, A. (2000). Attenuation Landfills - the Future in Landfilling. Chap. 17. 18 pp. ros.edu.pl/images/roczniki/archive/pp_2000_017.pdf
3. Containment landfills: the myth of sustainability
4. ASTM D 4318 Standard Test Methods for Plastic Limit of Soils, 2015 (American Standard)
5. Aucott, M. (February 2006). The fate of heavy metals in landfills: A Review. Report based on the Project of “Industrial Ecology, Pollution Prevention and the NY-NJ Harbor” Funded by New York Academy of Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献