Upregulated Signaling Pathways in Ruptured Human Saccular Intracranial Aneurysm Wall: An Emerging Regulative Role of Toll-Like Receptor Signaling and Nuclear Factor-κB, Hypoxia-Inducible Factor-1A, and ETS Transcription Factors

Author:

Kurki Mitja I.12,Häkkinen Sanna-Kaisa3,Frösen Juhana4,Tulamo Riikka4,von und zu Fraunberg Mikael5,Wong Garry12,Tromp Gerard6,Niemelä Mika5,Hernesniemi Juha5,Jääskeläinen Juha E4,Ylä-Herttuala Seppo3

Affiliation:

1. Laboratory of Functional Genomics and Bioinformatics, Department of Neurobiology

2. Department of Biosciences

3. Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland

4. Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland

5. Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland

6. Center for Molecular Medicine and Genetics and Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan; Current address: Weis Center for Research, Geisinger Health System, Danville, Pennsylvania

Abstract

Abstract BACKGROUND: Aneurysmal subarachnoid hemorrhage, almost always from saccular intracranial aneurysm (sIA), is a devastating form of stroke that affects the working-age population. Cellular and molecular mechanisms predisposing to the rupture of the sIA wall are largely unknown. This knowledge would facilitate the design of novel diagnostic tools and therapies for the sIA disease. OBJECTIVE: To investigate gene expression patterns distinguishing ruptured and unruptured sIA. METHODS: We compared the whole-genome expression profile of 11 ruptured sIA wall samples with that of 8 unruptured ones using oligonucleotide microarrays. Signaling pathways enriched in the ruptured sIA walls were identified with bioinformatic analyses. Their transcriptional control was predicted in silico by seeking the enrichment of conserved transcription factor binding sites in the promoter regions of differentially expressed genes. RESULTS: Overall, 686 genes were significantly upregulated and 740 were downregulated in the ruptured sIA walls. Significantly upregulated biological processes included response to turbulent blood flow, chemotaxis, leukocyte migration, oxidative stress, vascular remodeling; and extracellular matrix degradation. Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factor binding sites were significantly enriched among the upregulated genes. CONCLUSION: We identified pathways and candidate genes associated with the rupture of human sIA wall. Our results may provide clues to the molecular mechanism in sIA wall rupture and insight for novel therapeutic strategies to prevent rupture.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3