POTENTIAL ROLE OF 18FLUORODEOXYGLUCOSE–POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY IN DIFFERENTIATING BENIGN NEUROFIBROMA FROM MALIGNANT PERIPHERAL NERVE SHEATH TUMOR ASSOCIATED WITH NEUROFIBROMATOSIS 1

Author:

Karabatsou Konstantina1,Kiehl Tim-Rasmus2,Wilson David M.3,Hendler Aaron3,Guha Abhijit4

Affiliation:

1. Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada

2. Department of Pathology, University Health Network, Toronto, Canada

3. Department of Medical Imaging and Nuclear Medicine, University Health Network, Toronto, Canada

4. Arthur & Sonia Labatts Brain Tumor Center, The Hospital for Sick Children's Research Institute, Toronto, Canada

Abstract

Abstract OBJECTIVE Benign plexiform neurofibromas (PNfib), especially those occurring in patients with neurofibromatosis type 1, are at a significant risk of progressing to a malignant peripheral nerve sheath tumor (MPNST). Early diagnosis, followed by radical surgery and adjuvant radiation to maintain local tumor control, is of critical importance to prevent metastasis and subsequent mortality from MPNSTs. However, early diagnosis is hampered by the sensitivity of current imaging modalities such as computed tomography (CT) or magnetic resonance imaging to reliably detect this malignant transformation, which can occur heterogeneously in a PNfib to a MPNST. 18Fluorodeoxyglucose (18FDG)–positron emission tomography (PET) is linked to metabolism and proliferation of tissues and has been widely used in oncology including PNSTs. 18FDG-PET/CT has the added advantage of fusing metabolic and anatomic imaging data sets. METHODS In this prospective study, 9 neurofibromatosis type 1–associated PNfibs suspected to have undergone transformation to an MPNST were preoperatively evaluated by 18FDG-PET/CT and magnetic resonance imaging. A detailed histological evaluation correlated the average and regional standard uptake value (SUV) from the 18FDG-PET/CT to grade of malignancy of the suspected MPNST. RESULTS Imaging from 18FDG-PET/CT and associated SUV of the suspected MPNSTs demonstrated either a homogeneous or a heterogeneous pattern. Stratification of the maximal SUV to low (<4.0), intermediate (4.0–7.0), or high (>7.0) correlated to the proliferative index (Ki-67) and grade of MPNST. A maximal SUV of more than 7.0 was closely correlated to a focus of malignant transformation. CONCLUSION This study, on a limited number of cases, demonstrates the potential use of 18FDG-PET/CT to augment management of PNfibs, especially in the context of neurofibromatosis type 1, which is characterized by multiple tumors. The addition of CT anatomic imaging to 18FGD-PET can facilitate targeting biopsies to metabolic hot spots, to further augment diagnostic sensitivity. Much larger numbers of MPNSTs, which can only be accrued in a collaborative manner among institutions, are required to further assess the specificity and sensitivity of 18FDG-PET/CT in the diagnosis of MPNSTs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3