Association of Hemodynamic Factors With Intracranial Aneurysm Formation and Rupture

Author:

Can Anil1,Du Rose1

Affiliation:

1. Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

Abstract

Abstract BACKGROUND: Recent evidence suggests a link between the magnitude and distribution of hemodynamic factors and the formation and rupture of intracranial aneurysms. However, there are many conflicting results. OBJECTIVE: To quantify the effect of hemodynamic factors on aneurysm formation and their association with ruptured aneurysms. METHODS: We performed a systematic review and meta-analysis through October 2014. Analysis of the effects of hemodynamic factors on aneurysm formation was performed by pooling the results of studies that compared geometrical models of intracranial aneurysms and “preaneurysm” models where the aneurysm was artificially removed. Furthermore, we calculated pooled standardized mean differences between ruptured and unruptured aneurysms to quantify the association of hemodynamic factors with ruptured aneurysms. Standard PRISMA guidelines were followed. RESULTS: The hemodynamic factors that showed high positive correlations with location of aneurysm formation were high wall shear stress (WSS) and high gradient oscillatory number, with pooled proportions of 78.8% and 85.7%, respectively. Positive correlations were largely seen in bifurcation aneurysms, whereas negative correlations were seen in sidewall aneurysms. Mean and normalized WSS were significantly lower and low shear area significantly higher in ruptured aneurysms. CONCLUSION: Pooled analyses of computational fluid dynamics models suggest that an increase in WSS and gradient oscillatory number may contribute to aneurysm formation, whereas low WSS is associated with ruptured aneurysms. The location of the aneurysm at the bifurcation or sidewall may influence the correlation of these hemodynamic factors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3