Perineurial Window is Critical for Experimental Reverse End-to-Side Nerve Transfer

Author:

Chu Tak-Ho12,Alzahrani Saud12ORCID,McConnachie Amanda12,Lasaleta Nicolas12,Kalifa Amira12,Pathiyil Rajesh12,Midha Rajiv12

Affiliation:

1. Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada;

2. Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Abstract

BACKGROUND: The depth of connective tissue window in the side of a recipient nerve in reverse end-to-side transfers (RETS) remains controversial. OBJECTIVE: To test whether the depth of connective tissue disruption influences the efficiency of donor axonal regeneration in the context of RETS. METHODS: Sprague-Dawley rats (n = 24) were assigned to 1 of the 3 groups for obturator nerve to motor femoral nerve RETS: group 1, without epineurium opening; group 2, with epineurium only opening; and group 3, with epineurium and perineurium opening. Triple retrograde labeling was used to assess the number of motor neurons that had regenerated into the recipient motor femoral branch. Thy1-GFP rats (n = 8) were also used to visualize the regeneration pathways in the nerve transfer networks at 2- and 8-week time point using light sheet fluorescence microscopy. RESULTS: The number of retrogradely labeled motor neurons that had regenerated distally toward the target muscle was significantly higher in group 3 than that in groups 1 and 2. Immunohistochemistry validated the degree of connective tissue disruption among the 3 groups, and optical tissue clearing methods demonstrated donor axons traveling outside the fascicles in groups 1 and 2 but mostly within the fascicles in group 3. CONCLUSION: Creating a perineurial window in the side of recipient nerves provides the best chances of robust donor axonal regeneration across the RETS repair site. This finding aids nerve surgeons by confirming that a deep window should be undertaken when doing a RETS procedure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3