Applications of Carbon Fiber Instrumentation in Spinal Oncology: Recent Innovations in Spinal Instrumentation and 2-Dimensional Illustrative Operative Video

Author:

Oh Justin1,Visco Zachary R.2,Ojukwu Disep I.3ORCID,Galgano Michael A.14

Affiliation:

1. Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA;

2. Department of Orthopaedic Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;

3. School of Medicine, St. George's University, Great River, New York, USA;

4. Department of Neurosurgery, University of North Carolina, Chapel Hill, North Carolina, USA (current institution)

Abstract

BACKGROUND: The management of spinal oncology necessitates a multimodal approach, with surgical intervention, radiation-based therapy, and postoperative advanced imaging. These systems must work well together to provide optimal patient outcomes. Traditional metallic spinal implants produce image artifacts and lead to radiation dose attenuation, which inhibit both disease monitoring and disease treatment, respectively. OBJECTIVE: To demonstrate the feasibility of an improved biomaterial implant that provides structural stability, while also allowing for disease monitoring and treatment in spinal oncology patients. METHODS: From February 2021 to September 2021, 3 patients with spinal oncologic deformity requiring resection and posterior spinal stabilization underwent fixation with polyether ether ketone-carbon fiber implants at a single academic institution. RESULTS: Patient ages ranged from 23 to 74 years (mean: 44.7 years). All patients underwent posterior spinal fixation using standard approaches. They each received polyether ether ketone-carbon fiber pedicle screw and rod implants, placed in standard fashion. There were no dural tears, postoperative wound infections, or other complications related to their treatment. Postoperative surveillance revealed gross total resection of the targeted tumor on postoperative radiographic imaging. CONCLUSION: Polyether ether ketone-carbon fiber implants are a safe and effective option for the treatment of thoracolumbar posterior spinal pathology. The utilization of this novel type of instrumentation in posterior spinal approaches may provide benefit to patients with spinal tumors over existing forms of posterior spinal instrumentation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3