Neuronavigation-Specific Parameters for Selective Access of Trigeminal Rootlets in Radiofrequency Lesioning: A Cadaveric Morphometric Study

Author:

Kaye Joel1ORCID,Ramanathan Vishan2,Sheehy John P.1,Andaluz Norberto1,Tew John1,Forbes Jonathan A.1

Affiliation:

1. Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA;

2. University of Cincinnati College of Medicine, Cincinnati, Ohio, USA

Abstract

BACKGROUND AND OBJECTIVE: Radiofrequency lesioning (RFL) is a safe and effective treatment for medically refractory trigeminal neuralgia. Despite gaining mainstream neurosurgical acceptance in the 1970s, the technique has remained relatively unchanged, with the majority of series using lateral fluoroscopy over neuronavigation for cannula guidance. To date, there are no studies describing neuronavigation-specific parameters to help neurosurgeons selectively target individual trigeminal rootlets. In this cadaveric study, we sought to provide a neuronavigation-specific morphometric roadmap for selective targeting of individual trigeminal rootlets. METHODS: Embalmed cadaveric specimens were registered to cranial neuronavigation. Frontotemporal craniotomies were then performed to facilitate direct visualization of the Gasserian ganglion. A 19-gauge cannula was retrofit to a navigation probe, permitting real-time tracking. Using preplanned trajectories, the cannula was advanced through foramen ovale (FO) to the navigated posterior clival line (nPCL). A curved electrode was inserted to the nPCL and oriented inferolaterally for V3 and superomedially for V2. For V1, the cannula was advanced 5 mm distal to the nPCL and the curved electrode was reoriented inferomedially. A surgical microscope was used to determine successful contact. Morphometric data from the neuronavigation unit were recorded. RESULTS: Twenty RFL procedures were performed (10R, 10L). Successful contact with V3, V2, and V1 was made in 95%, 90%, and 85% of attempts, respectively. Mean distances from the entry point to FO and from FO to the clival line were 7.61 cm and 1.26 cm, respectively. CONCLUSION: In this proof-of-concept study, we found that reliable access to V1–3 could be obtained with the neuronavigation-specific algorithm described above. Neuronavigation for RFL warrants further investigation as a potential tool to improve anatomic selectivity, operative efficiency, and ultimately patient outcomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3