Effect of nano silica (SiO2) on the hydration kinetics of cement

Author:

Abu-Lebdeh Taher1,Virgil Petrescu Relly Victoria2,Al-Nasra Moayyad3ORCID,Tiberiu Petrescu Florian Ion4ORCID

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, North Carolina A&T State University, Greensboro, USA

2. Transport Traffic and Logistics department, Bucharest Polytechnic University, Bucharest 060042 (CE) Romania

3. Department of Civil and Infrastructure Engineering, American University of Ras Al Khaimah, AURAK, Ras Al Khaimah, UAE

4. Theory of Mechanisms and Robots department, Bucharest Polytechnic University, Bucharest 060042 (CE) Romania

Abstract

This study investigated the influence of adding nano silica (SiO2) on the cement hydration process, particularly on the formation of calcium silicate hydrate (C-S-H) at different stages of hydration. The study investigated the effect of adding nano-silica on the mechanical properties of the hardened cement corresponding to the formation of C-S-H during the hydration process of a cement paste. Specimens made up of four different percentage of nano silica (0%, 1%, 3% and 5%) were tested at different stages of hydration ranging from 3 to 56 days. The effect of nano-silica on the compressive strength, stressstrain, and elastic modulus of nano-cement was examined using MTS and Forney testing machines. The signature phase and formation of C-S-H and calcium hydroxide (CH) were monitored using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The study also investigated the effect of curing method (vacuum and water curing) on the strength development. The experimental results show that the formation of calcium silicate hydrate (C-S-H) increases significantly during the early stages of hydration which correspond to the drastic increase in compressive strength. The formation of C-S-H continues to increase throughout the 56 days but at a moderate rate. The results reveal that 1% of nano silica by volume of cement is the optimum ratio that yields the maximum strength. The results also indicated that the strength of the traditional water cured specimens were higher than that of vacuum cured specimens.

Publisher

Faculty of Engineering, University of Rijeka

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3