Design of Dynamic Experiments: A Data-Driven Methodology for the Optimization of Time-Varying Processes
Author:
Affiliation:
1. Department of Chemical and Biological Engineering and Systems Research Institute for Chemical and Biological Processes, Tufts University, Medford, Massachusetts 02155, United States
Publisher
American Chemical Society (ACS)
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/ie3035114
Reference20 articles.
1. Use of tendency models and their uncertainty in the design of state estimators for batch reactors
2. Effect of process-model mismatch on the optimization of the catalytic epoxidation of oleic acid using Tendency models
3. Uncertainty issues in the modeling and optimization of batch reactors with tendency models
4. Tendency modeling of semibatch reactors for optimization and control
5. MODELING AND OPTIMIZATION OF LACTIC ACID SYNTHESIS BY THE ALKALINE DEGRADATION OF FRUCTOSE IN A BATCH REACTOR
Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamic data-driven models for complex pharmaceutical reactions — the dynamic response surface methodology;Current Opinion in Chemical Engineering;2024-09
2. A Parametric Bayesian Optimization Framework for Batch Dynamical Systems;2024 American Control Conference (ACC);2024-07-10
3. Enabling global interpolation, derivative estimation and model identification from sparse multi-experiment time series data via neural ODEs;Engineering Applications of Artificial Intelligence;2024-04
4. Applications of machine learning in antibody discovery, process development, manufacturing and formulation: Current trends, challenges, and opportunities;Computers & Chemical Engineering;2024-03
5. A two-phase approach optimizing productivity for a mAb-producing CHO cell culture process using dynamic response surface methodology models;Biochemical Engineering Journal;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3