Magnetically Aligned Co–C/MWCNTs Composite Derived from MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a Lightweight and Highly Efficient Electromagnetic Wave Absorber
Author:
Affiliation:
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Funder
Ministry of Education of the People's Republic of China
Natural Science Foundation of Beijing Municipality
Aeronautical Science Foundation of China
National Natural Science Foundation of China
Beijing Municipality
Publisher
American Chemical Society (ACS)
Subject
General Materials Science
Link
https://pubs.acs.org/doi/pdf/10.1021/acsami.7b10067
Reference74 articles.
1. Metamaterial Electromagnetic Wave Absorbers
2. CoNi@SiO2@TiO2and CoNi@Air@TiO2Microspheres with Strong Wideband Microwave Absorption
3. Electrospinning of Fe/SiC Hybrid Fibers for Highly Efficient Microwave Absorption
4. Synthesis of Hierarchical ZnFe2O4@SiO2@RGO Core–Shell Microspheres for Enhanced Electromagnetic Wave Absorption
5. Enhanced Absorption Performance of Carbon Nanostructure Based Metamaterials and Tuning Impedance Matching Behavior by an External AC Electric Field
Cited by 290 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-scale structural design of multilayer magnetic composite materials for ultra-wideband microwave absorption;Carbon;2024-11
2. Constructing crystalline/amorphous heterojunction in FeCo@C nanoboxes for enhanced electromagnetic wave absorption;Carbon;2024-10
3. Controlled Pyrolysis of MIL-88A Derived Varied-Phase Fe2O3@C Nanocomposites with Adjustably Electromagnetic Wave Absorption Properties;ACS Applied Nano Materials;2024-09-05
4. Recent advances in carbon composite films for high-performance, multifunctional and intelligent electromagnetic interference shielding and electromagnetic wave absorption;Carbon;2024-09
5. Graphene Oxide Aerogels with Oriented Microstructures as Bilayer Materials for Enhanced Broadband Microwave Absorption;ACS Applied Nano Materials;2024-08-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3