Effective Degradation of Aqueous Nitrobenzene Using the SrFeO3−δ Photocatalyst under UV Illumination and Its Kinetics and Mechanistic Studies
Author:
Affiliation:
1. Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science (IISc), Bangalore, Karnataka, India, 560012
Funder
Department of Science and Technology, Ministry of Science and Technology
Publisher
American Chemical Society (ACS)
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5b01474
Reference36 articles.
1. Enhancement Mechanism of Heterogeneous Catalytic Ozonation by Cordierite-Supported Copper for the Degradation of Nitrobenzene in Aqueous Solution
2. Selective photocatalytic degradation of nitrobenzene facilitated by molecular imprinting with a transition state analog
3. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation
4. Enhanced Photocatalytic Degradation of Aqueous Nitrobenzene Using Graphitic Carbon–TiO2 Composites
5. Determination of nitrobenzene by differential pulse voltammetry and its application in wastewater analysis
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring the structural, morphological, optical, and dielectric properties, along with photocatalytic performance of La-doped SrFeO3 nanofibers;Materials Research Bulletin;2024-11
2. Study the influence of Ag+ nanoparticles on the surface of the Sr1-xAgxFeO3-δ perovskite on optical, magnetic and antibacterial properties;Journal of Sol-Gel Science and Technology;2024-08-08
3. Perovskite-type strontium ferrite-based catalyst: Characterization and antibiotic degradation approach;Process Safety and Environmental Protection;2024-07
4. Efficient synthesis of recyclable porous BiFeO3/rGO thin film via sol-gel method as an enhanced photocatalyst;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-04
5. Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS);Chemosphere;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3