Dynamic Soft Sensor Development Based on Convolutional Neural Networks
Author:
Affiliation:
1. Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, People’s Republic of China
2. Department of Automation, Tsinghua University, Beijing 100084, People’s Republic of China
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Seventh Framework Programme
Publisher
American Chemical Society (ACS)
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.9b02513
Reference35 articles.
1. Mixture semisupervised principal component regression model and soft sensor application
2. Inferential control of processes: Part II. The structure and dynamics of inferential control systems
3. Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes
4. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
5. Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant
Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Soft sensor modeling based on masked convolutional transformer block deep residual shrinkage network;Journal of the Taiwan Institute of Chemical Engineers;2024-10
2. Graph semi-supervised soft sensor modeling based on label propagation algorithm;Measurement Science and Technology;2024-09-06
3. Self-Tuning Transfer Dynamic Convolution Autoencoder for Quality Prediction of Multimode Processes With Shifts;IEEE Transactions on Industrial Informatics;2024-09
4. Deep learning prediction of yields of fluid catalytic cracking via differential evolutionary dual-stage attention-based LSTM;Fuel;2024-08
5. An Interpretable Light Attention–Convolution–Gate Recurrent Unit Architecture for the Highly Accurate Modeling of Actual Chemical Dynamic Processes;Engineering;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3